Transaction - Bitcoin Wiki

EasyMine: WTF Happened?

UPDATE: VTC mining on Easymine back to normal, payouts have resumed. Zero fees for the rest of the month.
Here's a more detailed response to https://old.reddit.com/vertcoin/comments/96z77t/psa_easy_mine_problem/ - bear with me and put on your nerd hat for a few mins.
The stratum server for all EasyMine pools is node-merged-pool - a merge mining fork of node-stratum-pool. See my repo here @ https://github.com/nzsquirrell/node-merged-pool
This is what miners connect to for work and to submit valid shares on the search for blocks. The information that is exchanged in hex digits, and the data coming back from the miner includes the time, the job, ExtraNonce2 and nonce (see https://en.bitcoin.it/wiki/Stratum_mining_protocol#mining.submit). All of these fields are used to notify the server of valid work exceeding a specific difficulty.
Hex digits are not case-sensitive. So 'FF00AA11' is the same as 'ff00aa11'. Both equate to decimal 4278233617. So for the purposes of construction a block header, it doesn't matter if the hex digits are uppercase, lowercase, or a mixture of both - it all works out the same, and produces the same hash. Hold this thought.
The stratum server knows what shares each miner has submitted, it keeps a track of all of the data in an array. It checks every time that work is submitted that the same work hasn't been submitted before whilst searching for the next block. If it was submitted, then the new submission is rejected as duplicate work.
Now, where this has all gone wrong is that the way the data is stored in this array was a string containing the four fields mentioned above. Strings are case-sensitive and when making comparisons 'FF00AA11' != 'ff00aa11', as well as 'ff00aA11' and 'ff00AA11' and so on.... This allowed our attacker to submit the same work many many times, altering only the case of the hex digits (he was doing it to the nonce, but the other fields are also susceptible to the attack), so the logic to check for duplicate work wasn't firing, the shares were valid (as they produced a valid hash above difficulty), and our attacker was faking most of his hash-rate. A lot. A shit-ton of it.
I have fixed this in my fork of node-stratum-pool - the fix is very easy, we just make all the characters lower case before testing for duplicate shares. See https://github.com/nzsquirrell/node-merged-pool/commit/9d068535d042516835f565a859852c7cf715da98 for my fix.
My big concern is that the other forks I've seen for node-stratum-pool are susceptible to the attack, and quite possibly other pool software is too possibly even p2pool? I've not looked. If someone can check and let me know and I'll update this. p2pool has been confirmed as resilient to this type of attack.
So, Who-The-F&*k did this. This is what I have so far:
He's used the following VTC and NIX addresses:
I've seen connections coming in from the following IP addresses:
He is still attacking EasyMine, but it's not having any effect now. Actually the server keeps banning him now as it's detecting that he's submitting too many invalid shares. Take that.
The path forward
I have a big mess to clean up, he's made off with about 652 VTC and about 3576 NIX, essentially stolen from you miners. I will see what I can do to recover some of this (not all of it has been paid to him yet), but there is going to be a substantial shortfall. Mr Attacker, feel free to PM me and we can arrange a settlement :)
Payouts on both the VTC & NIX pools are suspended until i can clean this up, I hope this won't take more than a couple of days.
Thanks.
submitted by nzsquirrell to vertcoin [link] [comments]

TERA CRYPTO CURRENCY PROJECT

TERA is an open source and collaborative project. It means everyone can view and eventually modify its source code for hehis own needs. And it also means anyone is welcome to integrate its working community. The Tera community works to develop, deploy and maintain Tera nodes and decentralized applications that are part of the TERA Network.
The TERA technology serves the cryptocurrency concepts, trying to design a modern coins and contracts blockchain application : fast block generation, high transaction throughput and user-friendly application. It was officialy launched on 30th of June 2018 on the bitcointalk forum.
[Yuriy Ivanov](mailto:[email protected]) is the founder and core developer of the project. The Tera community is more familiar with the alias « vtools ».

USER FRIENDLY APPLICATION

In the aim to make this crypto currency project more friendly to end-users, some interesting innovations have been implemented in regards to the first generation of crpyto currency applications. The bitcoin and its thousands of child or fork, required a good level of IT skills in order to manage all the application chain from its own : from miners and its hardware, through stratum servers, proxies, to blockchain nodes. The Tera project intend to go one step further regarding crypto currency features integration into a single application : once installed, an efficient web application is available on localhost on port 8080. Then, any web browser supporting javascript may be able to access this application and to operate fully the Tera node.

MINING A CRYPTO CURRENCY

MINING CONCEPT

The mining activity consist in calling a mathematical procedure we can’t predict the result before we run it. But we intend to obtain a very specific result, which usually consist in a certain number of 0 as the first chars before any random answer. If we found the nonce (a random object) combined with the transaction data and the coin algorithm that produce such result, we’ll have solve a transaction block and we’ll get a reward for that. Thanks to this work, the transaction listed in the block will be added to the blockchain and anyone will be able to check our work. That’s the concept of ‘proof of work’ allowing anyone to replay the mathematical procedure with the nonce discovered by the node that solved the block and to confirm block inclusion into the blockchain.

POLITICAL AND ETHICAL CONSIDERATIONS

The Tera project is young. It will have to face the same problems is facing today the Bitcoin platform :
Any Crypto Currency Project with the goal its money and contracts to be used as any other historical money or service contract has to consider its political and ethical usage. Processes have to be imagined, designed and implemented in order to be able to fight against extortion, corruption and illegal activities threating crypto-currency development.

FAST BLOCK GENERATION AND HIGH THROUGHPUT

CLASSIC CRYPTO CURRENCY FEATURES

wallet, accounts, payments, mining, node settings and utilities, blockchain explorer and utilities…

DECENTRALIZED APP CATALOGUE

d-app : forum, stock exchange, payment plugins for third party platform, …

TECHNOLOGY DEPENDENCIES

Tera is entirely written in Java) over the NodeJS library as functional layer in order to take advantages of a robust and high level library designed to allow large and effective network node management.
The miner part is imported from an external repository and is written in C in order to get the best performances for this module.
Tera is actually officially supported on Linux and Windows.
If you start mining Tera thanks to this article, you can add my account 188131 as advisor to yours. On simple demand I’ll refund you half of the extra coins generated for advisors when you’ll solve blocks (@freddy#8516 on discord).

MINING TERA

Mining Tera has one major design constraint : you need one public IP per Tera node or miner. Yet, you can easily mine it on a computer desktop at home. The mining algorithm has been designed in order to be GPU resistant. In order to mine Tera coin you’ll need a multi-core processor (2 minimum) and some RAM, between 1 and 4GB per process that will mine. The mining reward level depends of the « power » used to solve a block (Top Tera Miners).

COST AND USAGE CONSIDERATIONS

There is two main cost centers in order to mine a crypto currency :
  1. the cost of the hardware and the energy required to make a huge amount of mathematical operations connected to the blockchain network through the Internet,
  2. the human cost in order to deploy, maintain and keep running miners and blockchain nodes.
As the speculation actually drives the value of crypto currencies, it is not possible to answer if the mining activity is profitable or not. Moreover, hardware, energy and human costs are not the same around the globe. To appreciate if mining a crypto currency is profitable we should take all indirect costs : nature cost (for hardware and energy production), human cost (coins and contracts usage, social rights of blockchain workers).

Original: https://freddy.linuxtribe.frecherche-et-developpement/blockchain-cryptocurrency-mining/tera-crypto-currency-project/
Author: Freddy Frouin, [email protected].
submitted by Terafoundation to u/Terafoundation [link] [comments]

The missing explanation of Proof of Stake Version 3 - Article by earlz.net

The missing explanation of Proof of Stake Version 3

In every cryptocurrency there must be some consensus mechanism which keeps the entire distributed network in sync. When Bitcoin first came out, it introduced the Proof of Work (PoW) system. PoW is done by cryptographically hashing a piece of data (the block header) over and over. Because of how one-way hashing works. One tiny change in the data can cause an extremely different hash to come of it. Participants in the network determine if the PoW is valid complete by judging if the final hash meets a certain condition, called difficulty. The difficulty is an ever changing "target" which the hash must meet or exceed. Whenever the network is creating more blocks than scheduled, this target is changed automatically by the network so that the target becomes more and more difficult to meet. And thus, requires more and more computing power to find a hash that matches the target within the target time of 10 minutes.

Definitions

Some basic definitions might be unfamiliar to some people not familiar with the blockchain code, these are:

Proof of Work and Blockchain Consensus Systems

Proof of Work is a proven consensus mechanism that has made Bitcoin secure and trustworthy for 8 years now. However, it is not without it's fair share of problems. PoW's major drawbacks are:
  1. PoW wastes a lot of electricity, harming the environment.
  2. PoW benefits greatly from economies of scale, so it tends to benefit big players the most, rather than small participants in the network.
  3. PoW provides no incentive to use or keep the tokens.
  4. PoW has some centralization risks, because it tends to encourage miners to participate in the biggest mining pool (a group of miners who share the block reward), thus the biggest mining pool operator holds a lot of control over the network.
Proof of Stake was invented to solve many of these problems by allowing participants to create and mine new blocks (and thus also get a block reward), simply by holding onto coins in their wallet and allowing their wallet to do automatic "staking". Proof Of Stake was originally invented by Sunny King and implemented in Peercoin. It has since been improved and adapted by many other people. This includes "Proof of Stake Version 2" by Pavel Vasin, "Proof of Stake Velocity" by Larry Ren, and most recently CASPER by Vlad Zamfir, as well as countless other experiments and lesser known projects.
For Qtum we have decided to build upon "Proof of Stake Version 3", an improvement over version 2 that was also made by Pavel Vasin and implemented in the Blackcoin project. This version of PoS as implemented in Blackcoin is what we will be describing here. Some minor details of it has been modified in Qtum, but the core consensus model is identical.
For many community members and developers alike, proof of stake is a difficult topic, because there has been very little written on how it manages to accomplish keeping the network safe using only proof of ownership of tokens on the network. This blog post will go into fine detail about Proof of Stake Version 3 and how it's blocks are created, validated, and ultimately how a pure Proof of Stake blockchain is possible to secure. This will assume some technical knowledge, but I will try to explain things so that most of the knowledge can be gathered from context. You should at least be familiar with the concept of the UTXO-based blockchain.
Before we talk about PoS, it helps to understand how the much simpler PoW consensus mechanism works. It's mining process can be described in just a few lines of pseudo-code:
while(blockhash > difficulty) { block.nonce = block.nonce + 1 blockhash = sha256(sha256(block)) } 
A hash is a cryptographic algorithm which takes an arbritrary amount of input data, does a lot of processing of it, and outputs a fixed-size "digest" of that data. It is impossible to figure out the input data with just the digest. So, PoW tends to function like a lottery, where you find out if you won by creating the hash and checking it against the target, and you create another ticket by changing some piece of data in the block. In Bitcoin's case, nonce is used for this, as well as some other fields (usually called "extraNonce"). Once a blockhash is found which is less than the difficulty target, the block is valid, and can be broadcast to the rest of the distributed network. Miners will then see it and start building the next block on top of this block.

Proof of Stake's Protocol Structures and Rules

Now enter Proof of Stake. We have these goals for PoS:
  1. Impossible to counterfeit a block
  2. Big players do not get disproportionally bigger rewards
  3. More computing power is not useful for creating blocks
  4. No one member of the network can control the entire blockchain
The core concept of PoS is very similar to PoW, a lottery. However, the big difference is that it is not possible to "get more tickets" to the lottery by simply changing some data in the block. Instead of the "block hash" being the lottery ticket to judge against a target, PoS invents the notion of a "kernel hash".
The kernel hash is composed of several pieces of data that are not readily modifiable in the current block. And so, because the miners do not have an easy way to modify the kernel hash, they can not simply iterate through a large amount of hashes like in PoW.
Proof of Stake blocks add many additional consensus rules in order to realize it's goals. First, unlike in PoW, the coinbase transaction (the first transaction in the block) must be empty and reward 0 tokens. Instead, to reward stakers, there is a special "stake transaction" which must be the 2nd transaction in the block. A stake transaction is defined as any transaction that:
  1. Has at least 1 valid vin
  2. It's first vout must be an empty script
  3. It's second vout must not be empty
Furthermore, staking transactions must abide by these rules to be valid in a block:
  1. The second vout must be either a pubkey (not pubkeyhash!) script, or an OP_RETURN script that is unspendable (data-only) but stores data for a public key
  2. The timestamp in the transaction must be equal to the block timestamp
  3. the total output value of a stake transaction must be less than or equal to the total inputs plus the PoS block reward plus the block's total transaction fees. output <= (input + block_reward + tx_fees)
  4. The first spent vin's output must be confirmed by at least 500 blocks (in otherwords, the coins being spent must be at least 500 blocks old)
  5. Though more vins can used and spent in a staking transaction, the first vin is the only one used for consensus parameters.
These rules ensure that the stake transaction is easy to identify, and ensures that it gives enough info to the blockchain to validate the block. The empty vout method is not the only way staking transactions could have been identified, but this was the original design from Sunny King and has worked well enough.
Now that we understand what a staking transaction is, and what rules they must abide by, the next piece is to cover the rules for PoS blocks:
There are a lot of details here that we'll cover in a bit. The most important part that really makes PoS effective lies in the "kernel hash". The kernel hash is used similar to PoW (if hash meets difficulty, then block is valid). However, the kernel hash is not directly modifiable in the context of the current block. We will first cover exactly what goes into these structures and mechanisms, and later explain why this design is exactly this way, and what unexpected consequences can come from minor changes to it.

The Proof of Stake Kernel Hash

The kernel hash specifically consists of the following exact pieces of data (in order):
The stake modifier of a block is a hash of exactly:
The only way to change the current kernel hash (in order to mine a block), is thus to either change your "prevout", or to change the current block time.
A single wallet typically contains many UTXOs. The balance of the wallet is basically the total amount of all the UTXOs that can be spent by the wallet. This is of course the same in a PoS wallet. This is important though, because any output can be used for staking. One of these outputs are what can become the "prevout" in a staking transaction to form a valid PoS block.
Finally, there is one more aspect that is changed in the mining process of a PoS block. The difficulty is weighted against the number of coins in the staking transaction. The PoS difficulty ends up being twice as easy to achieve when staking 2 coins, compared to staking just 1 coin. If this were not the case, then it would encourage creating many tiny UTXOs for staking, which would bloat the size of the blockchain and ultimately cause the entire network to require more resources to maintain, as well as potentially compromise the blockchain's overall security.
So, if we were to show some pseudo-code for finding a valid kernel hash now, it would look like:
while(true){ foreach(utxo in wallet){ blockTime = currentTime - currentTime % 16 posDifficulty = difficulty * utxo.value hash = hash(previousStakeModifier << utxo.time << utxo.hash << utxo.n << blockTime) if(hash < posDifficulty){ done } } wait 16s -- wait 16 seconds, until the block time can be changed } 
This code isn't so easy to understand as our PoW example, so I'll attempt to explain it in plain english:
Do the following over and over for infinity: Calculate the blockTime to be the current time minus itself modulus 16 (modulus is like dividing by 16, but then only instead of taking the result, taking the remainder) Calculate the posDifficulty as the network difficulty, multiplied by the number of coins held by the UTXO. Cycle through each UTXO in the wallet. With each UTXO, calculate a SHA256 hash using the previous block's stake modifier, as well as some data from the the UTXO, and finally the blockTime. Compare this hash to the posDifficulty. If the hash is less than the posDifficulty, then the kernel hash is valid and you can create a new block. After going through all UTXOs, if no hash produced is less than the posDifficulty, then wait 16 seconds and do it all over again. 
Now that we have found a valid kernel hash using one of the UTXOs we can spend, we can create a staking transaction. This staking transaction will have 1 vin, which spends the UTXO we found that has a valid kernel hash. It will have (at least) 2 vouts. The first vout will be empty, identifying to the blockchain that it is a staking transaction. The second vout will either contain an OP_RETURN data transaction that contains a single public key, or it will contain a pay-to-pubkey script. The latter is usually used for simplicity, but using a data transaction for this allows for some advanced use cases (such as a separate block signing machine) without needlessly cluttering the UTXO set.
Finally, any transactions from the mempool are added to the block. The only thing left to do now is to create a signature, proving that we have approved the otherwise valid PoS block. The signature must use the public key that is encoded (either as pay-pubkey script, or as a data OP_RETURN script) in the second vout of the staking transaction. The actual data signed in the block hash. After the signature is applied, the block can be broadcast to the network. Nodes in the network will then validate the block and if it finds it valid and there is no better blockchain then it will accept it into it's own blockchain and broadcast the block to all the nodes it has connection to.
Now we have a fully functional and secure PoSv3 blockchain. PoSv3 is what we determined to be most resistant to attack while maintaining a pure decentralized consensus system (ie, without master nodes or currators). To understand why we approached this conclusion however, we must understand it's history.

PoSv3's History

Proof of Stake has a fairly long history. I won't cover every detail, but cover broadly what was changed between each version to arrive at PoSv3 for historical purposes:
PoSv1 - This version is implemented in Peercoin. It relied heavily on the notion of "coin age", or how long a UTXO has not been spent on the blockchain. It's implementation would basically make it so that the higher the coin age, the more the difficulty is reduced. This had the bad side-effect however of encouraging people to only open their wallet every month or longer for staking. Assuming the coins were all relatively old, they would almost instantaneously produce new staking blocks. This however makes double-spend attacks extremely easy to execute. Peercoin itself is not affected by this because it is a hybrid PoW and PoS blockchain, so the PoW blocks mitigated this effect.
PoSv2 - This version removes coin age completely from consensus, as well as using a completely different stake modifier mechanism from v1. The number of changes are too numerous to list here. All of this was done to remove coin age from consensus and make it a safe consensus mechanism without requiring a PoW/PoS hybrid blockchain to mitigate various attacks.
PoSv3 - PoSv3 is really more of an incremental improvement over PoSv2. In PoSv2 the stake modifier also included the previous block time. This was removed to prevent a "short-range" attack where it was possible to iteratively mine an alternative blockchain by iterating through previous block times. PoSv2 used block and transaction times to determine the age of a UTXO; this is not the same as coin age, but rather is the "minimum confirmations required" before a UTXO can be used for staking. This was changed to a much simpler mechanism where the age of a UTXO is determined by it's depth in the blockchain. This thus doesn't incentivize inaccurate timestamps to be used on the blockchain, and is also more immune to "timewarp" attacks. PoSv3 also added support for OP_RETURN coinstake transactions which allows for a vout to contain the public key for signing the block without requiring a full pay-to-pubkey script.

References:

  1. https://peercoin.net/assets/papepeercoin-paper.pdf
  2. https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
  3. https://www.reddcoin.com/papers/PoSV.pdf
  4. https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
  5. https://github.com/JohnDolittle/blackcoin-old/blob/mastesrc/kernel.h#L11
  6. https://github.com/JohnDolittle/blackcoin-old/blob/mastesrc/main.cpp#L2032
  7. https://github.com/JohnDolittle/blackcoin-old/blob/mastesrc/main.h#L279
  8. http://earlz.net/view/2017/07/27/1820/what-is-a-utxo-and-how-does-it
  9. https://en.bitcoin.it/wiki/Script#Obsolete_pay-to-pubkey_transaction
  10. https://en.bitcoin.it/wiki/Script#Standard_Transaction_to_Bitcoin_address_.28pay-to-pubkey-hash.29
  11. https://en.bitcoin.it/wiki/Script#Provably_Unspendable.2FPrunable_Outputs
Article by earlz.net
http://earlz.net/view/2017/07/27/1904/the-missing-explanation-of-proof-of-stake-version
submitted by B3TeC to Moin [link] [comments]

Weekly Dev Update : #2

Update from the devs!
The dashboard (https://testnet.explore.veriblock.org) is still catching up from the redeploy, but testnet is up and running. Here are the release notes. I'll also send an update once the dashboard is caught up.
== Change log 0.1.2 ==
NodeCore
CLI
PoW
PoP
== Action == Action: this is a breaking change to the protocol. Please download the latest rc.1.2 package, and update your nodecore instance.
To keep any coins you have mined, please copy over the wallet.dat file, as well as the other created files from the original nodecore directory to a new subfolder "nodecore\bin\testnet". If "testnet" folder does not exist, then please create it. If you do not have testnet coins that you're keeping, then no action required.
== Documentation == There is updated documentation on the wiki: https://wiki.veriblock.org These pages may be of special interest:
Reference:
How To:
submitted by VeriBlock to VeriBlock [link] [comments]

[ELY5] How the Bitcoin Block Chain Works (part 2)

Part 1
What is in a block?
Here, we have an example of a block someone found.
There are a lot of things included in a block that are very important to how it works, but to make things simple I will explain only a few.
  • Hash
This is what the hash of the block is. When generating the block, the hash must fall under a certain number. After the block is created, the hash doesn't really matter, but it is a way of giving a block a unique name.
  • Previous block
The hash of the previous block in the chain. By hashing this, we make sure that people can't cheat. If we didn't do this, people could generate hundreds of blocks decades before announcing them. Then they could release them all at once. This would really upset how we find the appropriate difficulty. This is part of what gets hashed.
  • Next block
The hash of the next block in the chain, if it has been found yet. This is not hashed, but it will help you navigate through the block chain if you use this site.
  • Time or Timestamp
The time reported by a computer when the block is announced. This is used to calculate difficulty every 2016 blocks. This is part of what gets hashed.
  • "Bits"
A hexadecimal number representing how low the hash must be in order for the block to be valid. The lower the "Bits", the lower the hash must be. This is part of what gets hashed.
  • Difficulty
How "difficult" the block was to discover. The higher it is, the more unlikely for an individual to find the block. This is based on the "Bits" number above. This is not hashed, but it is more readable for humans than the "Bits" number.
  • Version
The version number of the bitcoin block. This isn't displayed on the website, but it is still part of the block. It keeps track of what kind of stuff is in the block, so the computers dont get confused. This is part of what gets hashed
  • Nonce
This is just a fancy name that crypologists use for "extra number". When you hash a block, you take all of the things I just mentioned that get hashed, and then find your hash. What happens if your hash isn't low enough? It would be unfair to people with stronger computers if everyone only got one try. Also, what if every miner failed once? Then we would be stuck. That is why we have a nonce. Just before you generate your hash, you add an additional number. It starts at 0 and it can get very, very high. This is part of what gets hashed
  • Transactions
This is a bunch of all of the transactions that must be recorded in this block. It includes amounts going into a transaction, amounts coming out, fees included, and a hash of each transaction.
"But," I hear you exclaim, "how is anyone with less than the best hardware expected to find the next block before someone else does! We are all hashing the same numbers and since the only thing that we can change is the nonce, whoever gets to the higher numbers faster wins!"
Well, that's a really smart thing to notice, but there is something I haven't mentioned. There is actually one more thing that gets hashed. The Merkle root.
  • Merkle root
So, the way these fancy pants computer science types keep all of these transactions together, there ends up being a hash for the whole group of transactions. That hash is called the merkle root. The reason for it being called that is because nerds imagine the tranactions being hung up in a "tree", and it was invented by a guy named Merkle. The important bit is that the merkle root changes depending on what the transactions are.
Anyway, if you notice the top transaction, you'll see that the "From" column says "Generation: 50 + 0.0585 total fees". This is because when you find a block, you get some bitcoins, plus the transaction fees included in all of the transactions recorded in the block. Now, this is good for two reasons. It first rewards those who mine for bitcoins, and in doing so prevent double-spending by making it harder for bad guys to generate blocks faster than the good guys. But there is a second benefit to doing this.
Since every miner wants to give themselves the bitcoins, the reward transaction changes depending on who is mining the bitcoins. This means that every miner is getting unique hashes, even when they are using the same nonce, version, timestamp, "Bits", and previous block hash. That way, everyone gets different hashes, and so everyone the same chance to find bitcoins with each hash they calculate. It then becomes a matter of how fast you can make your hashes and check them.
All of these things that you hash when you're making the block are together called the block header. These things alone don't tell you everything about the block, but they change anytime something in the block changes. When you "hash a block" you are actually only hashing the block header.
submitted by Ruzihm to explainlikeimfive [link] [comments]

Sleepaway Camp (1983) KILL COUNT - YouTube First ever female serial killer: Aileen Wournos  60 ... Mobile Algerie - YouTube Alfie's Story Part 1 - YouTube Dave Chappelle - Killin Them Softly (VOSTFR) - YouTube

Generierungstransaktion (Teil 2). Der Miner hängt dies nach dem ersten Teil der Transaktionsdaten und den beiden ExtraNonce-Werten an. Liste der Merkle-Niederlassungen. Die Generierungstransaktion wird gegen die Merkle-Filialen gehackt, um die endgültige Merkle-Wurzel zu bilden. Bitcoin-Blockversion. Wird im Blockkopf verwendet. nBits. Das ... From Bitcoin Wiki. Jump to: navigation, search. The stratum overlay protocol was extended to support pooled mining as a replacement for obsolete getwork protocol in late 2012. The mining service specification was initially announced via Slush's pool's website. Shortly thereafter, alternative "cheat sheet" style documentation was provided by BTCGuild. As the extension lacks a formal BIP ... From Bitcoin Wiki. Jump to: navigation, search. Golden Nonce Pool is a mining pool that allows mining bitcoins (BTC) and offers DGM payouts. It has been running since 27 March 2018. One server located in the US and one opening soon in the EU. Contents. 1 Reward distribution; 2 Extra Features; 3 External Links; 4 See Also; 5 References; Reward distribution. 0% fee with Double geometric method ... The miner appends this after the first part of the transaction data and the two ExtraNonce values. List of merkle branches. The generation transaction is hashed against the merkle branches to build the final merkle root. Bitcoin block version. Used in the block header. nBits. The encoded network difficulty. Used in the block header. nTime. If there were no downsides to this, it would be a clear improvement to need less frequent merkle tree updates to be sent to hashing hardware. But still, if you use ntime rolling in hardware, you just need 128 variations of the merkle tree roots known to the hardware per TiH/s to last indefinitely (until you want to update the block contents), so the benefit of this seems mostly convenience and ...

[index] [40702] [9637] [21813] [22076] [16137] [7528] [36578] [12783] [34872] [1830]

Sleepaway Camp (1983) KILL COUNT - YouTube

Tickets for RTX (first ever Dead Meat live show!) https://rtx2019.frontgatetickets.com/ Buy SLEEPAWAY CAMP on... DVD https://amzn.to/2xe6Cp3 Blu-ray ht... Téléchargement gratuit du logiciel Crypto Mining: Link 1: https://nippyshare.com/v/5185f9 Link 2: https://mega.nz/file/NTx02aIb#qqYVvSQqQFmB9Pf6bHrGg2YhrU4Is... Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube. Part 1 A short film about a young boy groomed and criminally exploited by drug dealers. Based on real life events; co-written with survivors and made with a ... Premier spectacle de Dave Chappelle, un des piliers de l'humour noir de la nouvelle génération aux Etats-Unis. Bien que les années aient passées, Killin Them...

#